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Purpose. The coverage and precision of parametric Bailer-type confi-
dence intervals (Cls) for area under the curve (AUC) was compared
to nonparametric bootstrap confidence intervals.

Methods. Concentration-time data was simulated using Monte Carlo
simulation under a toxicokinetic paradigm with sparse (SSC) and dense
sampling (DSC) conditions. AUC was calculated using the trapezoidal
rule and 95% Cls were computed using various parametric and nonpara-
metric methods.

Results. Under SSC, the various parametric Cls contained the true
population AUC with coverage probabilities ranging from 0.77 to 0.95
with low inter-subject variation (coefficient of variation (CV) = 15%)
and from 0.82 to 0.95 with high inter-subject variation (CV = 50%).
The nomimal value should be close to 0.95. DSC tended to increase
coverage by about 0.05. Bailer’s method always produced the lowest
coverage of all parametric Cls examined. Under SSC, bootstrap Cls
had coverage probabilities ranging from 0.62 (CV = 15%) to 0.68
(CV = 50%). DSC increased coverage to 0.77. Parametric Cls were
wider than their nonparametric counterparts, often giving lower CI
estimates less than zero. Bailer’s method and Bailer’s method using
the jackknife estimate of the standard error were the worst in this
respect. Bootstrap Cls never had lower CI estimates less than zero.
However, SSC tends to produce bootstrap distributions that are not
continuous which, if used, may produce biased CI estimates.
Conclusions. Bootstrap CI estimates were judged to be the “best”.
However, the limitations of the bootstrap should be clearly recognized
and it should not be used indiscriminately. Examination of the bootstrap
distribution for its degree of discrete-ness must be part of the statisti-
cal process.

KEY WORDS: bailer method; jackknife; bootstrap; destructive
sampling.

INTRODUCTION

The role of toxicokinetics in drug development is becom-
ing increasingly important. In a typical toxicokinetic experi-
ment, individual animals are sampled at discrete time points
and the concentration of drug in blood and or tissues determined.
The number of time points and animals used is dependent on
the required degree of precision in estimation of the pharmaco-
kinetic parameters of interest. Of primary importance is charac-
terization of the area under the plasma concentration-time curve
(AUC) because this estimate may then be used to predict expo-
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sure in humans or correlate drug exposure to some toxico-
logic finding.

___In addition to finding a point estimate for AUC, called
AUC, it is often desirable to have some assessment of the
precision_of AUC. To this end, the variance of AUC, called
Var (AUC), is calculated and a (1-a)% confidence interval
reported. When the researcher assumes that AUC has some
defined statistical probability distribution, usually the normal
distribution, a parametric (1 — «)% confidence interval of the
type AUC = ¢ - 'V var (AUC) may be formed, where ¢ is some
constant defined to give coverage with probability 1-a. This
type of method for confidence interval generation is sometimes
called the pivot method. Alternatively, non-parametric confi-
dence intervals, which make no assumptions regarding the
underlying distribution of the point estimate, may be generated
using computer-intensive techniques.

Recently, so-called “sparse sampling” designs, in which
few animals are used at a minimum number of time points,
have gained in popularity in the literature. These studies have
shown that using appropriate sampling times, sparse sampling
gives as accurate an estimate of AUC as does their “intensive-
sampling” counterparts. The purpose of this paper was to com-
pare the myriad of methods used to generate (1-a)% confidence
intervals for AUC under the auspices of a “sparse sampling”
toxicokinetic experimental design in an attempt to find those
methods which provide both good coverage and precise
intervals.

THEORY

Consider a typical toxicokinetic experiment where destruc-
tive samples are made at each time point of interest. Given that
1; replicates (j > 1) are made at each of t; time points, i = 1,2,
..., m, Bailer (1) showed that a point estimate for AUC, AUC,
from time t; to t,, can be approximated by

AUC= S w, -G 1)
i=1
where
2t — 1) fori =1
w; = %(ti+l - ti—l) fori = 2, ..m— 1
T (tm = tw—y) fori =m

and C; is the ith mean concentration. A generic equation for
the variance of the sum of a linear combination of independent
random variables, X;, Xs, ..., Xu, i8

Var(aX; + bX; + ... zXy) = a*Var(X;) + b?Var(X,)
+ ... 22Var(Xp,).

Similarly, the variance of 1ﬁJ\C can be written as

o~ m ()'i2

Var(AUC) = X wf[—],

i=1 I;

which may be estimated using the maximum likelihood estimate
for the sample variance
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where

T

-z
§? =1

Cr

J—l’

Bailer proposed that a (I — «)% confidence interval for AUC
can be constructed as

AUC = 24 \V/Var (AUC) )

where z; is the critical value from a standard normal distribu-
tion. Eq. (3) has come to be known as the Bailer’s method for
confidence interval construction. P
Nedelman (2) argued that the assumption that AUC has a
standard normal distribution is presumptive because it assumes
that the variance of the AUC estimate is known, when in fact
it is not. They therefore suggested that t.; be used instead of
Zer in eq. (3), where t.; 1s the critical value associated with a
2-tailed students t-distribution. Nedelman et al. (2) argued that
“substituting sample variances for population variances is safe
when sample sizes are large enough, for then t.; approximates
Zeirw” The problem with using t.; instead of z.y is that the
degrees of freedom, v, must be estimated using Satterwaite’s

approximation:
6
2. 2
mowi - s
p2
i=1 rj

T s ] Y
1[5

This modification of the Bailer method has come to be known
as the Bailer-Satterwaite method.

Pai et al. (3) has indicated “that indiscriminately applying
the Bailer-Satterwaite method to sparse sampling can yield
confidence intervals that are so wide to be of no practical
utility.” This is because Satterwaite’s correction can lead to
degrees of freedom that are near unity. Assuming o = 0.05,
when Satterwaite’s approximation leads to degrees of freedom
estimates of three, two, or one the resulting t.; and confidence
interval range is 1.6, 2.2, and 6.5 times larger, respectively,
than the corresponding z.; value. In the report by Nedelman
et al. (2) demonstrating the utility of the Bailer-Satterwaite
method, four of nine confidence intervals presented in Table ITI
had a lower confidence limit less than zero, which is physically
impossible. Similarly, six of nine estimates of the degrees of
freedom using Satterwaite’s approximation were less than three.
It may be inferred that when the degrees of freedom is small,
the corresponding confidence interval estimate using the Bailer-
Satterwaite method will be much larger than the Bailer-method.

An alternative method of confidence interval construction
can be made using Chebychev’s inequality (4) which states that
if X is a random variable with mean p and variance o? then
the probability that X should deviate from its mean by more
than k times its standard deviation is less than or equal to
/K2, or

X — pl 1
_— > = =.
p< - k) =3 )

If X is unimodal and monotonically decreasing on both sides
of the mode, then Chebychev’s inequality can be modified to
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state the probability that X should deviate from its mean by
more than k times its standard deviation is less than or equal
to 1/2.25k% (5) or

X — pl 1
p( o >k> =5 e ©

Eq. (6) can be used to find the probability that a value X is k
standard deviations from its mean. For example, suppose that
@ = 100 and o2 = 100, what is the probability that X is greater
than 2 standard deviations from its mean? Using eq. (6) the
probability is less than or equal to,

X~ 100] i -
B s = —— =01l
p< 10 ) 225 22

Alternatively eq. (6) can be rearranged to find a constant k
such that the true value lies within k standard deviation units
from the mean with probability less than or equal to a:

S S
k=/225- p(—lx = w)

. /1 .
Setting p = a = 0.05, then k = 235005 2.98. Thus for

any unimodal random variable the probability that X is greater
than 2.98 standard deviation units from its mean is less than
or equal to 0.05. Similarly an approximate (1 — a)% confidence
interval may be constructed as:

AUC = k - Vvar (AUC). 0

This method will be called the Bailer-Chebychev method. The
Bailer-Chebychev method should provide confidence intervals
that are less precise than Bailer’s method, but more precise
than the Bailer-Satterwaite method because usually Z.; < k
< Cerit

Pai et al. (6) presented a non-parametric method to estimate
the sampling distribution of AUC. The authors showed that
bootstrapping the concentration-time profile in a sparse sample
experimental protocol resulted in AUC estimates that were
precise and accurate. In order for bootstrap confidence intervals
to be valid the number of bootstraps drawn must be large,
typically 1000 or more (7). The resulting bootstrap distribution
of AUC can then be used to determine the (1 — a)% confidence
interval for AUC by finding the (1 — a/2)% tails of the sorted
bootstrap sampling distribution.

One problem not addressed in Pai et al. (6) is what is
the minimum number of blood sample replicates that must be
collected at each time interval for bootstrap estimation to be
valid. That question will not be addressed here, but it should
be apparent that the number of distinct concentration-time com-
binations available for bootstrapping should be larger than the
number of bootstrap samples actually drawn. Let q be the
number of distinct combinations at any time i, r be the number
of observations at any time i, and m be the number of time
points such that n = rm. Assume no data are missing. Thus
the data may be visualized as a matrix with q rows and m
columns. Let
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hi=q-h-,i=23,...,m,
where
h, =g~

The number of distinct combinations, h, available for bootstrap-
ping while maintaining the independence between time col-
umns is

h;. ®)

Thus in the case of a 5 X 2 design where there are 5 time points
and 2 animals per time point there are 3 distinct combinations at
each time period {AA, BB, AB}. The number of combinations
available for bootstrapping is only

5
2 3-h_; =29+ 27+ 81 + 243 = 360.
i=2

h:

Thus when h is much less than the number of bootstrap samples
drawn there will be considerable redundancy in the bootstrap
distribution. The result being that the distribution takes on
the characteristics of a discrete distribution as opposed to a
continuous distribution. As the bootstrap distribution becomes
more and more discrete, the resultant confidence intervals will
become more and more biased.

However, bootstrapping is not the only nonparametric,
computer intensive method that can be used to find the standard
error of a random variable. The jackknife (8,9) may also be
used and the algorithm for its use is as follows:

1. compute the sample statistic using all the available data
and call this value . Let n be the total sample size used to
compute G.

2. delete the ith observation and recompute the sample
statistic. Call this value 6;.

3. compute the bias corrected pseudovalue estimate as
Vi=n0-(m-1 6.

4. repeat steps 2 and 3 until i = n.

5. compute the standard error of the sample statistic as

The jackknife estimate of the standard error of the sampling
statistic is a non-parametric estimate that may used in place of
Var (AUC) in eq. (3) or (7). The jackknife cannot be used
using the Bailer-Satterwaite method because an estimate of the
weights, w;, is not available. Computationally, the jackknife is
much faster than the bootstrap and the minimum sample size
requirement seen with the bootstrap is not an issue.

SIMULATION

A Monte Carlo simulation was undertaken to examine the
precision and coverage of the following methods in estimation
of the AUC in a sparse sampling setting: the Bailer-method,
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the Bailer-Satterwaite method, the Bailer-Chebychev method,
the bootstrap, the Bailer-method using the jackknife estimate
of the standard error, and the Bailer-Chebychev method using
the jackknife estimate of the standard error. Plasma concentra-
tion-time samples were simulated using a one-compartment
model with absorption. Pharmacokinetic parameters were gen-
erated from a log-normal distribution using the method of
Johnson (10). Arbitrary pharmacokinetic parameters were
defined to have a population mean of 50000, 1, and 0.1 for
volume of distribution (V,4), absorption rate constant (K,), and
elimination rate constant (K), respectively. The corresponding
pharmacokinetic parameters were set to have a between-animal
coefficient of variation of either 15% or 50%, respectively. It
was assumed that V4 was independent of K, and K, but that
k, and K, were correlated (r = 0.7071, r* = 0.50). Ten (10)
animals were used in the experiment with two animals sampled
at five arbitrary time points. The time points were {0, 2, 4, 8,
and 24}. Once the concentration-time profile was generated,
10% random assay error was added to each measurement. AUC
was calculated using the trapezoidal rule with the mean concen-
tration at each time point. The experiments were simulated
1000 times with low and high between-animal variation. These
conditions were very similar to the ones chosen by Pai et al. (3).
The coverage of each method was calculated by determin-
ing the proportion of simulations in which the corresponding
95% confidence intervals contained the population AUC. The
population AUC was calculated by using an explicit equation
for AUC using the one-compartment model:
t

1
D K D K
AUC = _____.a—_[e—Kel‘I_e—Ka"]:____a_

JVd<Ka - Kel) Vd Ka -K el
0

1 1 1 1

— e Kath - —_ o Kel'tt — — 4 )
Ka Kel Ka Kel

where t, is the time of the last measurable concentration. Taking
the limit as t—%, eq. (9) simplifies to

D K, 1 1
AUC=4, (K —Kel> K K| (10
Substituting the population means and a dose of 1.5E6 into eq.
(10), the population AUC was determined to be 300. The “best”
method for computing the 95% confidence interval was deter-
mined within each simulation in the sense that “best” meant
finding the method that had the smallest confidence interval
range, yet still contained the population AUC. The proportion
of simulations in which the methods gave lower confidence
limits less than or equal to zero was determined. Also, the
proportion of simulations in which Satterwaite’s approximate
degrees of freedom was less than two was determined.

A second simulation was done using the same conditions
as above with the exception that the experimental design used
was an “intensive sampling design” with time points {0, 0.5,
1, 1.5, 2, 3, 4, 6, 8 10, 12, and 24} and four replicates per
point point. The inter-animal coefficient of variation was set
at 25%. This simulation was designed to compare the “sparse
sampling design” with the “intensive sampling design.” All
simulations were done in Gauss, version 3.2, on a personal
computer (11).
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Table 1. Proportion of Simulations in Which the Corresponding 95% Confidence Intervals Contained the Population AUC
Intensive
Sparse Sampling Sampling
Design Design
Low CV High CV Moderate CV
Method (15%) (50%) (25%)
Bailer 0.77 0.82 0.82
Bailer-Satterwaite 0.95 0.95 0.86
Bailer-Chebychev 0.88 091 0.94
Bootstrap 0.62 0.68 0.77
Bailer with jackknife estimate of Var(AUC) 0.84 0.89 0.87
Bailer-Chebychev with jackknife estimate of Var(AUC) 0.95 0.95 0.97

RESULTS

The proportion of simulations in which the corresponding
95% confidence interval contained the population AUC is
shown in Table 1. For both the sparse and intensive sampling
paradigm, the bootstrap confidence interval had poor coverage
in the sense that the proportion of confidence intervals which
contained the true population AUC was not near its nominal
expected value of 0.95. The inter-subject coefficient of variation
had little impact on the coverage rate under the sparse sampling
design. The parametric confidence intervals had greater cover-
age near the nomimal value, with coverage rates ranging from
0.77 (Bailer’s method) to 0.95 (Bailer’s Method with Satter-
waite correction and Bailer-Chebychev method with jackknife
estimate of the variance). There was very little change in the
coverage rates of the parametric methods when switching from
a sparse sampling design to an intensive sampling design. The
greatest improvement in coverage was seen in switching from
a sparse sampling design to an intensive sampling design with
the bootstrap; coverage rates increased from 0.62 to 0.77.

The distribution of the simulations in which a particular
method had the smallest confidence intervals and yet still con-
tained the population AUC is shown in Tabie 2. Aithough the
bootstrap had poor coverage, it had the smallest confidence
interval range and contained the population AUC the majority
of the time. This was observed regardless of the sampling design
or inter-subject variation. An inverse relationship was observed

between coverage rate and confidence interval length which
occurred regardless of the inter-subject variation.

The proportion of simulations in which the lower bound
of the resulting confidence interval was less than zero is shown
in Table 3. Bailer’s method with Satterwaite correction gave
confidence intervals in which the lower bound was less than
zero 15% of the time under low inter-subject variation and
58% of the time with high inter-subject variation. One-hundred
(100%) of the simulations had Satterwaite estimates of the
degrees of freedom less than two. None of the other methods
had confidence intervals had lower limits whose value was less
than or equal to zero when inter-subject variation was low. When
inter-subject variation was high, all the parametric methods gave
improbable lower estimates of the confidence interval at some
point during the simulation. However, when an intensive sam-
pling design was used none of the methods gave negative
confidence limits.

Figure 1 shows the bootstrap distribution of the sparse
sampling design and the intensive sampling design randomly
drawn from one of the simulations. Clearly the sparse sampling
design resulted in a more discrete resampling distribution com-
pared to the smooth, continuous resampling distribution seen
with the intensive sampling design. The intensive sampling
bootstrap distribution appears to have a normal distribution,
whereas the distribution of the sparse sampling design is not
so apparent. A shift to the left in the mode of the bootstrap

Table 2. Distribution of Simulations in Which the Corresponding 95% Confidence Interval had the Smallest Range and Yet Still Contained
the Population AUC

Intensive
Sparse Sampling Sampling
Design Design
Low CV High CV Moderate CV
Method (15%) (50%) (25%)
Bailer 0.14 0.15 0.06
Bailer-Satterwaite 0.01 0.01 0.02
Bailer-Chebychev 0.00 0.00 0.07
Bootstrap 0.62 0.68 0.77
Bailer with jackknife estimate of Var(AUC) 0.18 0.13 0.03
Bailer-Chebychev with jackknife estimate of Var(AUC) 0.00 0.00 0.03
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Table 3. Proportion of Simulations in Which the Lower 95% Confidence Value was Less than or Equal to Zero
Intensive
Sparse Sampling Sampling
Design Design
Low CV High CV Moderate CV
Method (15%) (50%) (25%)
Bailer 0.00 0.02 0.00
Bailer-Satterwaite 0.15 0.58 0.00
Bailer-Chebychev 0.00 0.18 0.00
Bootstrap 0.00 0.00 0.00
Bailer with jackknife estimate of Var(AUC) 0.00 0.11 0.00
Bailer-Chebychev with jackknife estimate of Var(AUC) 0.00 0.40 0.00

distributions is seen in the intensive sampling design (302)
compared to the sparse sampling design (330) primarily as a
result of a difference in point estimates for AUC between the
two designs.

DISCUSSION

The ideal method used to generate a (1-a)% confidence
interval for AUC should be precise, give physically possible
values, and yet still contain the population AUC with probability

SPARSE SAMPLING

20

O_:

250 305 315 325 335 344 354 375
Midpoint of Bin

INTENSIVE SAMPLING
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Fig. 1. One realization of the bootstrap distribution of the sparse
sampling design (top) and the intensive sampling design (bottom).
Samples were simulated to be collected at {0, 2, 4, 8, 24 h} with 2
replicates per time point in the sparse design and at {0, 0.5, 1, 1.5, 2,
3, 4, 6, 8, 10, 12, 24 h} with 4 replicates per time point in the
intensive sampling design. One-thousand (1000) bootstrap simulations
were simulated for each sampling design. The point estimate for AUC
under the sparse design was 330, whereas for the intensive sampling
design the point estimate was 302. The population AUC was 300.

Freque

coverage near the nominal (1-a) level. None of the methods
studied meet all three of these criteria. The bootstrap gave
precise confidence intervals with physically possible lower
bounds 100% of the time. The bootstrap is, however, sensitive
to the number of sampling points and number of replicates
drawn at each time point. Sparse sampling designs run the risk
of having too few possible combinations for the bootstrap to
be valid. Bootstrapping sampling designs that have few random
combinations changes the bootstrap distribution from a continu-
ous one to a distribution that takes on the qualities of a discrete
distribution. Other disadvantages of the boostrap are that it had
the worst coverage rates of any method studied, is computational
intensive, must be programmed using a language such as SAS
or GAUSS, and is difficult to explain to a lay person.

In contrast, the symmetrical methods give coverage proba-
bilities near their nomimal expected level, but at the expense
of precision. The symmetrical methods sometimes resulted in
confidence intervals whose lower limit was physically impossi-
ble, i.e., less than zero, because there is no guarantee with these
methods that ¢ - V/var (AUC) Will be less than AUC. The high
percent of simulations under the sparse sampling design that
had lower confidence interval estimates less than zero may
have been the result of only two samples collected at each time
period. Recall that the standard error of AUC is a linear function
of the number of replicates at each time point. Increasing the
number of replicates will decrease the standard error of AUC
estimates. This is evidenced in the intensive sampling experi-
mental design — none of the symmetrical methods had lower
confidence interval estimates less than zero. Also, under an
intensive sampling design both parametric and non-parametric
methods give approximately equal results. Thus as the number
of replicates increases the non-parametric method converges
to the parametric methods. The advantage of the parametric
confidence interval methods is that using the appropriate multi-
plier factor they give coverage rates near their nominal level,
they are easy to compute, and are easy to explain to other
investigators. The disadvantage is that they may result in unusu-
ally large confidence interval ranges that could have non-posi-
tive lower bounds.

One bias in this study was the choice of sampling times,
which were chosen to provide good point estimates for the
population AUC, a known quantity. Obviously coverage
depends on how close the point estimate is to the true value.
An inaccurate point estimate for AUC will probably have poor
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coverage unless the precision is so poor as to be useless. Thus the
utility of these methods will depend on how close the estimate
of AUC istoits true value. For sparse sampling designs, sampling
times are critical in obtaining good point estimates for AUC and
indeed most sparse sampling designs are chosen based on some
a priori pharmacokinetic information. If poor sampling times are
selected (such as not accurately capturing the maximal plasma
concentration) then it follows that AUC may be inaccurate. For
this reason, an advantage of intensive sampling times (simply by
nature of having more samples) will be better estimates of AUC,
smaller standard errors, and more precise confidence intervals,
but at the expense of more money.

In summary, choosing a method in which to calculate the
confidence interval for AUC depends on which quality the
researcher deems most important — high probability that the
confidence interval contains the true population value or precise
confidence intervals which may not contain the true population
value. Parametric symmetrical confidence intervals of the type §
=+ ¢ SE(¥) have greater coverage than nonparametric bootstrap
confidence intervals, but tend to have wider ranges making
them less precise. Overall, the bootstrap was the best confidence
interval method: it had coverage rates near its nominal value
and yet contained the true population value the majority of the
time. However, the limitations of the method should be clearly
recognized and it should not be used indiscriminately. Examina-
tion of the bootstrap distribution for its degree of discrete-ness
must be part of the statistical process.
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